7 research outputs found

    Maximum Entropy Approach for the Prediction of Urban Mobility Patterns

    Full text link
    The science of cities is a relatively new and interdisciplinary topic. It borrows techniques from agent-based modeling, stochastic processes, and partial differential equations. However, how the cities rise and fall, how they evolve, and the mechanisms responsible for these phenomena are still open questions. Scientists have only recently started to develop forecasting tools, despite their importance in urban planning, transportation planning, and epidemic spreading modeling. Here, we build a fully interpretable statistical model that, incorporating only the minimum number of constraints, can predict different phenomena arising in the city. Using data on the movements of car-sharing vehicles in different Italian cities, we infer a model using the Maximum Entropy (MaxEnt) principle. With it, we describe the activity in different city zones and apply it to activity forecasting and anomaly detection (e.g., strikes, and bad weather conditions). We compare our method with different models explicitly made for forecasting: SARIMA models and Deep Learning Models. We find that MaxEnt models are highly predictive, outperforming SARIMAs and having similar results as a Neural Network. These results show how relevant statistical inference can be in building a robust and general model describing urban systems phenomena. This article identifies the significant observables for processes happening in the city, with the perspective of a deeper understanding of the fundamental forces driving its dynamics.Comment: 14 pages, 7 figure

    Systemic risk approach to mitigate delay cascading in railway networks

    Full text link
    In public railway systems, minor disruptions can trigger cascading events that lead to delays in the entire system. Typically, delays originate and propagate because the equipment is blocking ways, operational units are unavailable, or at the wrong place at the needed time. The specific understanding of the origins and processes involved in delay-spreading is still a challenge, even though large-scale simulations of national railway systems are becoming available on a highly detailed scale. Without this understanding, efficient management of delay propagation, a growing concern in some Western countries, will remain impossible. Here, we present a systemic risk-based approach to manage daily delay cascading on national scales. We compute the {\em systemic impact} of every train as the maximum of all delays it could possibly cause due to its interactions with other trains, infrastructure, and operational units. To compute it, we design an effective impact network where nodes are train services and links represent interactions that could cause delays. Our results are not only consistent with highly detailed and computationally intensive agent-based railway simulations but also allow us to pinpoint and identify the causes of delay cascades in detail. The systemic approach reveals structural weaknesses in railway systems whenever shared resources are involved. We use the systemic impact to optimally allocate additional shared resources to the system to reduce delays with minimal costs and effort. The method offers a practical and intuitive solution for delay management by optimizing the effective impact network through the introduction of new cheap local train services.Comment: 27 pages, 14 figure

    An occupant-centric approach in BIM environments to improve comfort and renovation planning

    No full text
    The construction sector is among the main responsible for energy consumption and greenhouse gases emissions. Hence, buildings retrofitting shall be encouraged and supported by targeted actions to achieve a European climate-neutrality by 2050, as pointed out by EU Agenda objectives. In this context, the European Commission is promoting an action plan for the renovation wave. One step towards the renovation action is the exploitation of digital tools such as Building Information Model (BIM) and Internet of Things (IoT). This paper is related to the outcomes of an ongoing EU funded project –BIM4EEB- and it illustrates how the application of two BIM-based tools, namely BIMPlanner and BIM4Occupants, developed within the project. The two tools have respectively the purpose of sharing current information about the progress of construction site works among renovation stakeholders and giving inhabitants tailored information about their indoor home conditions, comfort preferences and energy consumption. In this regard, IoT devices installed in a demonstration building permitted the real-time evaluation and control of several parameters. Therefore, a pilot building, namely the Italian demonstration application of the project, is described for testing the proposed tools. Benefits connected to the BIM framework and IoT devices result in an improvement of data sharing and communication between renovation stakeholders, then in an enhanced building process

    The Development of a BIM-Based Interoperable Toolkit for Efficient Renovation in Buildings: From BIM to Digital Twin

    No full text
    Nowadays, buildings renovation is a subject of special interest since the building and construction sector is the main body responsible for energy consumption and emissions. Hence, it is necessary to concentrate on refurbishment to achieve Europe’s climate neutrality by 2050 according to European Agenda goals. The BIM4EEB Project, a BIM-based fast toolkit for the efficient renovation of residential buildings, directs the attention toward developing an exhaustive toolkit based on Building Information Modeling (BIM) to be adopted in the renovation of existing residential buildings, to make the flow of information efficient, decreasing intervention working time while improving building performances, quality, and comfort for inhabitants. BIM4EEB is developing a BIM management system connected to an operational and multifunctional toolkit for various architecture, engineering, and construction (AEC) stakeholders, integrating a set of tools for improving BIM adoption in renovation environments based on an interoperable flow of information. This paper presents the Horizon2020 Project and the framework used to develop the toolkit. In addition, the first outcomes of the toolkit development are outlined. The validation procedure in real environments has started to demonstrate the efficacy and applicability of the methodology and tools. Although the project is still in progress, benefits connected to the framework and the BIM-based toolkit result in an enhanced building renovation process

    An Interoperable BIM-Based Toolkit for Efficient Renovation in Buildings

    Get PDF
    Since the buildings and construction sector is one of the main areas responsible for energy consumption and emissions, focusing on their refurbishment and promoting actions in this direction will be helpful to achieve an EU Agenda objective of making Europe climate-neutral by 2050. One step towards the renovation action is the exploitation of digital tools into a BIM framework. The scope of the research contained in this paper is to improve the management of information throughout the different stages of the renovation process, allowing an interoperable exchange of data among the involved stakeholders; the development of an innovative BIM-based toolkit is the answer to the research question. The research and results obtained related with the development of an interoperable BIM-based toolkit for efficient renovation in buildings in the framework of the European research project BIM4EEB. Specifically, the developed BIM management system allows the exchange of the data among the different tools, using open interoperable formats (as IFC) and linked data, in a Common Data Environment, to be used by the different stakeholders. Additionally, the developed tools allow the stakeholders to manage different stages of the renovation process, facilitating efficiencies in terms of time reduction and improving the resulting quality. The validity of each tool with respect to existing practices is demonstrated here, and the strengths and weaknesses of the proposed tools are described in the workflow detailing issues such as interoperability, collaboration, integration of different solutions, and time consuming existing survey processes

    Workshop: BIM4EEB: A BIM-Based Toolkit for Efficient rEnovation in Buildings

    No full text
    Abstract On October 29th the workshop corresponding to the mid-term conference of BIM4EEB (Acronym of BIM Based Toolkit for Efficient rEnovation in Buildings, Horizon Project under grant agreement N. 820660 ) project was held during the Sustainable Places 2020 event. The main focus of the workshop was a general introduction of the project combined with vertical insights on the single tools that have been developed or are still in development. BIM4EEB grows from simple consideration: according to a BPIE analysis on EPC data, about 97% of building stock, currently not in A level, must be upgraded to achieve 2030 decarbonization objectives. As the biggest energy consumers, buildings consume about 40% of energy and they are responsible for 36% of CO2—they are strategic in order to reach the set of environmental goals and subjected to renovation and refurbishment during their lifecycle according to a specific schedule. Refurbishment becomes the crucial point of sustainability not only in construction but also in the environment in general for the coming years. The BIM4EEB project focuses on implementing a complete BIM (Building Information Modelling)-based toolkit to be adopted in the renovation of existing residential buildings to make the flow of information efficient, to enhance communication and data transfer decreasing intervention working time while improving building performances, quality, and comfort for inhabitants. The platform that controls all the tools developed for the best performance of renovation is BIMMS (Acronym of Building Information Modelling Management System platform), namely a management system linked to an operational and multifunctional toolkit for different AEC stakeholders, offering tools for increasing the adoption of BIM in renovation businesses based on an interoperable flow of information. During the workshop, six development tools have been explored in addition to the BIM Management System: BIM4EEB Fast Mapping of Buildings Toolkit, BIM4EEB BIMeaser tool, BIM4EEB BIM4Occupants tool, BIM4EEB Auteras tool, BIM4EEB BIMcpd tool, and BIM4EEB BIMPlanner tool
    corecore